

Joseph Kolly, Ph.D.
Office of Research & Engineering

Key Findings

- The condition inside the center wing tank of TWA 800 was flammable
- The ignition and combustion of Jet A fuel can generate sufficient pressures to break apart the center wing tank

747-100 Center Wing Tank

Flight Testing
JFK International Airport
July 1997

Duplication of

Boeing 747-100 aircraft

Weight and balance

Fuel loading

Operations at same time of day

Similar climate

ECS pack operations

Followed TWA 800 ascent profile

as closely as possible

- temperature sensors
- pressure sensors
- vibration sensors
- vapor sampling

Positions shown for illustrative purposes, not actual layout

Flight Test Instrumentation

National Transportation Safety Board

Investigation Into Trans World Airlines Flight 800

TWA 800 Emulation Flight
Center Wing Tank Ullage Temperatures at 13,800 feet

Fuel Vapor Sampling

Desert Research
Institute

- first in-flight samples
- confirmed flammability
 of TWA 800

Determine the Chemistry and Concentration of the Fuel Vapor in the Center Wing Tank

1997 to 2000

University of Nevada, Reno

Fuel Chemistry Research

- included factors relevant to TWA 800
- enabled prediction of fuel flammability for all flight conditions
- confirmed flammability of TWA 800

Fundamental Research of Jet A Chemistry

Finding

 Three independent analyses showed that the conditions inside TWA 800's center wing tank were flammable

Findings

- Flight tests indicate that the center wing tank can be heated to temperatures much higher than ambient (external) temperatures
- The major source of this heat is the air conditioning system packs

1996 to 2000

California Institute of Technology

Ignition Energy and Combustion Research

Investigate the effect of factors significant to TWA 800

- fuel type
- temperature range
- altitude
- fuel load

Fundamental Research of Jet A Combustion

Ignition Energy Research

Results of Research

 Energy required for ignition is between 0.5 and 500 millijoules

Test Chamber

Determine Energy Required for Jet A Ignition

Combustion Research

Results of Research

- Peak combustion pressures
 between 39 and 52 psi
- Peak pressures exceed strength of CWT (25 psi)

Large Test Chamber

Determine Combustion Behavior of Jet A

Findings

For the conditions on board TWA 800 at the time of the accident:

- Conditions inside center wing tank were flammable
- Ignition energy is between 0.5 and 500 millijoules
- Peak explosion pressures exceed failure pressures of center wing tank

1/4-scale CWT Experiments, 1997 to 1999

California Institute of Technology

Phase 1

- Simulant fuel

Applied Research Associates

Phases 2 and 3

- Jet A vapor

- Duplication of TWA 800's temperature altitude

Simulate Combustion Behavior Within a Center Wing Tank Model

1/4-scale Center Wing Tank Model

National Transportation Safety Board

Investigation Into Trans World Airlines Flight 800

1/4 –scale Center Wing Tank Model Enclosure,
Phases 2 and 3

Building containing 1/4-scale model Front end of 1/4-scale model Side window of 1/4-scale model

National Transportation Safety Board

Investigation Into Trans World Airlines Flight 800

Findings

1/4-scale experiments show that for the conditions on board TWA 800 at the time of the accident:

- In every test, Jet A fuel vapor was demonstrated to be flammable
- Peak pressures can develop that exceed the structural limitations of the center wing tank

Findings

• The condition inside the center wing tank was flammable.

Verified by: Flight test measurements In-flight vapor sample analysis Laboratory chemical analysis Laboratory combustion experiments

 The ignition and combustion of Jet A fuel can generate sufficient pressures to break apart the center wing tank.

Verified by: Laboratory combustion experiments 1/4-scale model experiments

1997 to 2000

Christian Michelsen Research

Sandia National Laboratories

Computer Modeling

- two models developed
- validated with 1/4-scale experiments
- 1/4-scale and full-scale
 CWT simulations

Calculate the Dynamics of Full-scale Center Wing Tank Combustion

1997 to 2000

Combustion Dynamics, Ltd

 Analyze each computer model simulation scenario and compare to physical evidence

Analysis Method to Determine Probable Ignition Location

Findings

Analysis of full-scale computer simulations show:

- Confirmation that peak pressures can be generated that exceed the structural limitations of the center wing tank
- Internal ignition and combustion of Jet A vapor is consistent with the damages observed in the wreckage and with structural failure calculations

Conclusions

- The condition inside the center wing tank was flammable
- The ignition and combustion of Jet A fuel can generate sufficient pressures to break apart the center wing tank

